Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Journal of Bioscience and Bioengineering
Volume 129 (6), 2020, Pages 679-686

Synthesis and characterization of a triple enzyme-inorganic hybrid nanoflower (TrpE@ihNF) as a combination of three pancreatic digestive enzymes amylase, protease and lipase

Duygu Aydemir1,2, Firdevs Gecili3, Nalan Özdemir3, Nuriye Nuray Ulusu1,2

School of Medicine, Department of Medical Biochemistry, Koc University, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey.

Abstract

Nanoflowers are recently developed flower-shaped nanoparticles consisting of several layers of petals to improve surface reaction and stability. Among them organic-inorganic hybrid nanoflowers have been spotlighted, since they can overcome enzyme-related limitations, including low stability, high production cost, substrate/product inhibition and difficult recovery. In this study, triple enzyme-inorganic hybrid nanoflowers (TrpE@ihNFs) were synthesized using a mixture of three enzymes (α-amylase, lipase and protease) and Cu2+ ions. TrpE@ihNFs were characterized by their morphology and chemical point of view by using different techniques including SEM, FTIR, EDX, and XRD. Afterwards we compared the enzyme activity and stability of TrpE@ihNFs with the free enzymes, including lipase, amylase and protease at the different pH and temperatures spectrophotometrically. Our data reveal that enzyme activities and stability of TrpE@ihNFs were significantly higher compared to the each free enzyme. In conclusion, we showed TrpE@ihNFs which can be used for the treatment of wastewater, biosensors, biocatalysts, and bio-related devices in the future.

Keywords: Amylase, Lipase, Protease, Hybrid nanoflower, Catalytic activity, Stability.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution